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The form of the K-space representation,/ ' ,  of the 2-matrix for electronic wave functions, 
which depends strongly on the form of the wave function, is discussed. For Hartree-Fock 
functions lr' is diagonal, for antisymmetrized products of strongly orthogonal geminM (APSG) 
functions/" has N/2 idempotent blocks plus diagonal terms, and for configuration interactions 
functions /" is generally non-diagonal. A new proof of the special properties o f / "  for APSG 
functions is given. The 2-matrix of the truncated natural orbital expansion of the Boys 1S Be 
function is presented and discussed in view of the electron-pMr approximation. The natural 
3-state functions needed in the "1-3" natural expansion of Be are also presented. 

On discute la forme de la repr6sentation dens l'espaee K: / ' ,  de la matricedensit6 du second 
ordre pour des fonetions d'onde 61ectroniques; elle d6pend fortement de la forme de la fonetion 
d'onde. Pour des fonctions de Hartree-Fock JP est diagonal, pour des produits antisym6tris6s 
de fonetions g6minales fortement orthogonMes (APSG) f '  a N/2 blocs idempotents et des 
termes diagonaux, pour des fonctions d'interaction de configuration/" est g6n6ralement non- 
diagonal. Une nouvelle preuve des propri6t~s sp6ciales de /" pour les fonctions APSG est 
donn6e. La matrice du second-ordre du d6veloppement tronqu6 de Boys en orbitMes naturelles 
pour 1S Be est pr~sent6e et discut6e du point de vue de l'approximation par paires. Les fone- 
tions naturelles a 3 6tats n6cessaires au d6veloppement nature1,1-3" de Be sont aussi donn6es. 

Die Form der K-Raum-Darstellung, Y', tier Zweiermatrix fiir Elektronenwellenfunktionen, 
die stark v o n d e r  Form der Wellenfunktion abh~ngt, wird diskutiert. F/ir Hartree-Fock- 
Funktionen ist F diagonal, fiir antisymmetriesierte Produkte yon streng orthogonalen Gemi- 
nalen (APSG) b e s t e h t / '  aus N/2 idempotenten B15cken plus Diagonaltermen, und fiir Kon- 
figurationswechselwirkungsfunktionen ist /" allgemein nicht-diagonal. F/Jr die speziellen 
Eigenschaften yon /" f/it APSG's wird ein neuer Beweis gegeben. Die Zweiermatrix der 
abgebroehenen Entwicklung natfirlicher Orbitale der Boys'sehen 1S-Be-Funktionen wird an- 
gegeben und im Hinbtick auf die Elektronenpaarapproximation diskutier~. Die in der natiir- 
lichen t-3-Entwick]ung yon Be benStigten 3-Elektronen-Funktionen werden gleichfalls ange- 
geben. 

Introduction 

Research  on the  t h e o r y  of r educed-dens i ty -ma t r i ces  is m o t i v a t e d  p r imar i l y  b y  
the  des i rab i l i ty  of  hav ing  a possible  a l t e rna t ive  to  solving the  SchrSdinger  equa-  
t ion  in order  to  f ind m a t h e m a t i c a l  descr ip t ions  of  phys ica l  s ta tes  of electronic 
sys tems  (e.g., a t o m s  or molecules).  As  is well  known,  i t  is impossible  to  solve the  
SchrSdinger  equa t ion  exac t l y  for an  ~Y-electron sys tem wi th  2Y > I.  I n  principle,  
however ,  the  a p p r o x i m a t i o n  cal led the  conf igurat ion in te rac t ion  m e t h o d  can 
y ie ld  solut ions  which give expec t a t i on  values  of  phys ica l  proper t ies ,  genera l ly  the  
t o t a l  energy,  as accura te ly  as expe r imen ta l  measurements .  To da t e  th is  accuracy  
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has been achieved only for 2-electron systems, although with the advent of even 
larger and faster electronic computers such accuracy will probably be obtained 
for 3- and 4-electron systems in the near future. The problem of constructing a 
reduced-density-matrix for a state of interest, i.e., defining the necessary and 
sufficient conditions one must impose on a density matrix to insure a one-to-one 
correspondence with a quantum mechanical state, has been labeled "the N- 
representability problem" by COL~MA~ [5]. The physical properties normally of 
interest are eigenvalues of one- and two-electron operators; therefore, one is 
concerned primarily with reduced-density-matrices of first- and second-order only. 

The 2-Matrix 

The second-order reduced-density-matrix, called the 2-matrix, is defined by 

F( l ,  2; t ' , 2 ' )  = (~) [W(I,  2 , 3 . . . N ) ~ * ( 1 ' , 2 ' , 3 . . . N ) d ~ a . . . d ~ r  (t) 
t 

where }P(i, 2 . . . .  N) is an N-electron wave function and (~) equals the number of 
ordered electron-pairs in the N-electron system (L6wdin's normalization) [12]. 
From its definition, F(I ,  2; f ' ,  2') is a Hermitian quadratic kernel; thus it has a 
diagonal series representation [8], 

r(2, 2; f ,  2') = ~ ~ g~(2, 2) g*(f, 2'), (2) 

where the set of functions g~ are normalized and antisymmetric with respect to 
interchange of variables ; g(2, 2) = - g(2, i). Corresponding to the 2-matrix func- 
tion, we can introduce the 2-matrix operator F (~), 

2) = f / ' ( 2 ,  2; 2', 2 ')/*(2' ,  2') dr1" dw~,, (3) r(2) / (2 ,  

where / is an arbitrary 2-variable function. The eigenvalue equation for the 2- 
matrix operator is 

P (2) g~(2, 2) = ~ ~ ( t ,  2 ) .  (4) 

The ~ are eigenvalues and the g~ the corresponding eigenfunctions of//(S). The g~ are 
called natural geminals; "geminal" referring to 2-electron function and "natural"  
referring to an eigenfunction of the reduced-density-operator. The eigenvalues ~ 
may be interpreted as the number of electron-pairs described by gt ; the probability 
of an electron-pair being "in" g~ times the total density of electron-pairs in the N- 
electron system. (By the term "electron-pair" we shall always mean ordered pairs; 
i.e., the electrons "labeled" 2 and 2 form one pair.) 

By introduction of the 2-matrix we transform the problem of studying N- 
electron functions into one of studying the properties of a set of invariant 2- 
electron functions - -  the natural geminals [5]. Once the natural geminals are 
known, any 2-electron properties can be obtained immediately. E.g., consider 
the N-electron Hamiltonian 

27 2g 
= ~ h~ ~) + ~ ~(~) .~,, , (5) 

i=1 i<~ 

which can be rewritten as [we divide by the norm of F (2,2)] 

- -  ~ (~i  1) -~ n i  l)) ~- hi~2 ) (6) 
N - t  
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The expectation value of 5/0 can be written as 

where 

= f gg(l, 2) 5/0 gi(l, 2) d~ 1 4T3, (8) 

and r~ is the 2-rank of }P [1]. 
One-electron properties are calculated via the t-matrix which is obtained from 

the 2-matrix by an integration, 

r(l; r )=   r(l, 2; r, (9) 

There is a great deal yet  to be learned about the 2-matrix. Approximate 
natural geminals, and their corresponding eigenvalues, have been obtained for a 
number of 4-electron atomic and molecular wave functions [3] of varying degrees 
of goodness (with respect to the ground state total energy). I t  was seen that  the 
properties of the 2-matrix vary  greatly in going from the simple form of the 
Hartree-Fock function to configuration interaction functions. The natural geminals 
changed from a simple product to an extended sum of products. Both gl and g~ 
include the terms which had been introduced into the orighaal functions to describe 
electron-electron correlation effects. In  the next  section we will consider the 
special properties of the 2-matrix for the Be 1S ground state when the 4-electron 
wave function is approximated as an antisymmetrized product of strongly ortho- 
tonal  geminals (APSG). ~unctions of this form are intermediate between the 
Hartree-Fock and configuration interaction forms in complexity [14]. The for- 
realism used is tha t  developed by  BARNETT and S~ULL [3] which is quite useful 
because it allows direct general application of most of the results obtained by 
L6WD1N and S~vLL in their compleat study of the 2-elec~ron system [13]. 

The Electron-Pair Approximation 

I t  was shown by L6wDr~ [12] tha t  an N-electron function can be expanded as 
a linear combination of Slater determinants, 

W(l, 2, 3, 4) = ~ dk gtk(l, 2, 3, 4) ,  (10) 

where the set of d~, variationMly determined coefficients, are chosen to give the 
proper symmetry properties to ~ t _  e.g., for an atom, ~ is generally an eigenfunc- 
tion of the operators L 2, Lz, S 2, Sz. In forming the 2-matrix we first expand each 
kgt~ across its first two rows, then we have 

In matrix notation 

~ ( l ,  2, 3, 4) ~ y  = h ( , 4 ) .  1/6 i5 C~t/l(l, 2) * 3 ( i l )  

1 1 = ~ f (  , 2) Cfr 4) (12) 

where f is a row vector of all the 2 • 2 Slater determinants, the/~, which result 
from the Laplace expansion on each ~ above. Now the 2-matrix function is given 
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by 
H I ,  2; t ' ,  2') =f( l ,  2) C C t f t ( t  ', 2'), (i3) 

where we have assumed orthonormality of the set used to construct h r], thus 

f*(3, 4)f(3, 4) = 1. (t4) 

After diagonalizing the K-space representation of F(t, 2; I', 2'), C C t, the 2- 
matrix becomes 

rz 
F(I, 2; i ' ,  2') = g(l ,  2) 2 g+(V, 2') = 5 ~ g~(l, 2) g*(i', 2') .  (i5) 

i 

(The reader will find the above procedure presented in considerable detail in 
Ref .  [a].) 

Now we consider the special case when W is constructed via the APSG approxi- 
mation [H]. The two pair-functions are defined by 

p 

i = l  
and 

r 

AB = ~ bd0jl(l) 0j~(2)], (17) 
i = l  

where both functions are normalized and antisymmetric to electron exchange 
(the square bracket denotes a Slater determinant). The strong orthogonality con- 
dillon which is always used in practice [H], i.e. 

fAA( t ,  3) As(3, 4) &3 = 0 ,  (18) 

is introduced by assuming orthonormality within and between the t-electron 
spinorbital sets {~s~} and {0j}. Therefore, 

a~ = t ,  (19) 
i 

q 
5 ~ b~ = ~ ,  (20) 
i 

and the 4-electron function is given by 

T(l ,  2, 3, 4) = [AA(t, 2) AB(3, 4)]. (21) 

Expanding T,  Eq. (21), it has the form [3] 

1 
T = ~ ~ a i  bj {[q~lq'J [0Jl 0 j  + [0r 0 j  [~a ~ ]  + 

- [9~10jd [9~  Oj~[l - [gJ~ Oj~] [~o,: 1 0 j , ] } ,  

where the double sum is over the p terms in Aa, the q terms in AB, and the p • q 
terms that  are mixed (contain one spinorbital from each pair-function). I~ow, 
considering the matrix notation of Eq. (12), the row vector f ( t ,  2) can be grouped 
into terms from AA, terms from AB, and the mixed terms, 

f = f~  ~ fB  $ f2~l. (23) 
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Further,  C has the form 

C =  A 

Changing notation slightly, let 

) o o 

0 G MM 
(24) 

FAB = CAB( CAB)* (25) 

with matrix elements 
I"~AB ~ [~AB g~AB (26) 

= 'Jik~ "~]k �9 
k 

Now the K-space representation of the 2-matrix has block diagonal form, 

C O t =  [ ' =  F BA O0 . (27) 
~ 0  0 FMM 

Generally, to find the natural geminals we would need to diagonalize each block 
in turn. However, due to the special form of the APSG function we see that  this 
is not necessary. Observing the following relationship, 

= 5 { 5  c5" e f t )  { 5  
n k l 

= 5 {~. ai bk an b~} {• an bl al bl} (28) 
n k l 

2 
= ~ a ~ a n a  J 

n 

which is valid for all i and ], 1 "~AB is an idempotent matrix, 

(/~AB)2 : F A B .  (29) 

Therefore I "AB can have eigenvalues of zero and unity only [8]. From the trace of 
F A  B , 

Tr r A- = B =  i ,  (30) 

it follows that  1 "~AB has o n l y  o n e  non-zero eigenvalue, 1 = 1. 
Considering the secular equation briefly [8], the set of numbers {ai} of Eq. (t6) 

form the eigenvector and the eigenfunction may be chosen as AA itself. The same 
procedure follows through for I ~BA showing AB to be its natural geminal. 

Inspection of matrix elements for terms in I ~MM shows that  only diagonal terms 
appear because of the relationships among {~} and {01}. Further,  from Eq. (22) 
the diagonal terms are degenerate in sets of four. The corresponding eigenfunc- 
tions are just the simple products, [~, 0~], which KVTZnLI~mO [11] calls "un- 
correlated" natural  geminals. 

One can, by  this method, go into considerably more detail than we have done 
here. By explicitly specifying the forms of AA and AB one can determine the 2- 
rank of T [1] and enumerate the number and magnitudes of all the eigenvalues of 
F. One can continue, generalizing the results to N-electron systems, consider 
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states of different symmetries, and consider systems of chemically different types. 
The theorem proved above, tha t  the 2-matrix of a APSG wave function is dia- 
gonal, it not new, although the method of proof is. KVTZE~IOO [10, 11] has con- 
sidered the problem and spelled out many  of the special relationships implicit in 
the theorem. (The reader is referred to Ref. [11] where he reviews, fists, and 
discusses many  of these properties.) 

5Tatural Geminals 

Considerable insight can be gained by  studying a wave function expressed in 
an invariant  basis set. In  this section, then, we present the results of a 2-matrix 
analysis of the Boys 1S ground state configuration interaction wave function [4] 
expressed in its naturM orbital expansion [2]. Clearly, this natural  orbital set is 
only approximate,  however, the utility of transforming functions to such a basis 
is well established [9, 15]. The natural  orbital expansion is given in Tab. l ,  and 
the eigenvalues of r{ 1) and U(2) are listed in Tab. 2. 

The natural  geminals (see Tab. 3) are seen to have forms close to what  one 
would expect from an APSG function. For an APSG function the naturM orbitals 
of A A and A B  are the natural  orbitals of ~ as well [11]. We see here that ,  except 
for small cross-terms containing Za, gl and g2 are sums of squares - -  the natural  
expansion form for 2-electron functions. From its use in the natural  orbital ex- 
pansion, Z4 is what  one would call an intershell orbital. I f  ~ were a pure APSG 
form, all natural  orbitals would be localized within the region spanned by  A A  or 
A B  only, and i~ltershell correlation effects would be described only by  uneorrelated 
natural  geminals such as the dominant term in g3. I f  one compares the natural  
orbitals of the EBBING and H~ND~,~SO~ [7] APSG calculation of LiH with the 
natural  orbitals expressed in the same basis of Ebbing's configuration interaction 
calculation [6] of the same molecule, the strongly occupied inner shell (essentially 
a Li++ Is  orbital) and bonding natural  orbitals (see Ebbing's  plot of a2) are quite 
similar. The delocalized natural  orbitals of the configuration interaction function 
are transformed among themselves in the APSG function into orbitals within the 
space of A A  or AB. 

Table 1. The truncated natural orbital expan- 
sion of the Boys Be 1S /unction~ 

Configuration Coefficient 

t (Z1) 2 (X~) 2 s2s ~ 0.954452 
2 (gl) 2 (Za) ~ s2p 2 -0.296472 
3 (X2) ~ (Xa) 2 s2s ~ -0.023838 
4 (Z2) ~ (Z6) 2 s~p 2 -0.023518 
5 (gs) 2 (Z~Za) p2s~ -0.00t157 
6 (gl) 2 (Z~) ~ s2s 2 -0.001157 
7 (g3) 2 (XD~4) p2s~ 0.000895 
8 (Z~) ~ (X~4) s2s 2 -0.000285 
9 (Xd) 2 (gigs) s~s ~ -0.000114 
lO (Xl) 2 (ZcZ6) s2s 2 -0.000050 

See Ref. [4]. 
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Table 2. Occupation numbers/or the Boys 1S Be/unction 

.y,(1) y'(~) 

n symmetry symmetry 

.998877 s .9999518 1S 

.912102 s .9998465 1S 

.087896 p .9109798 a 1S 

.000571 s .91097980 (3) b aS 

.000554 p .0878962 (4)~ P 

.000000 s 

These values are for the total T, for the truncated 
natural orbital expansion of Tab. 1 the numbers are the 
same through the sixth decimal. 

b A 3-fold degenerate term (see Ref. [3]). 
A 4-fold term. 

To the degree of degeneracy of the eigenvalues of gl and go, the sum and the 
difference of the first two natural geminals transform into predominantly K shell 
and L shell pair functions, 

1 
~/'~ (~1 + g2)  ~ A K  = ~ ' O Z  2 - -  "02X42 + "02Z 2 - -  .0006Zl Z4 

I 
(gl -- g~) '~  A L  = .9Z~ -- .3Z~ -- .0004Z2 Zd- (31) 

Omitting the cross-terms, an ASPG function formed from AK and AL gives the 
first four terms of the natural orbital expansion which has an overlap of almost 
unity with the total function [2]. (Of course starting from A K  and ./lL as defined 
here, the overlap would be different as the coefficients in the natural orbital 
expansion are determined by a different criterion.) Similarly, the first few terms, 
the predominant ones, of the natural orbital expansions of WATSO~'S [16] and 
WEiss' [17] functions would be obtained by constructing A K  from Z1, Zd, Z5 for 
WATSO~r and from Z1, Zs, Z6 for WEISS,  and constructing AL from Z2, Zs, Z6 for 
WATSO~r and from Z~, Zs, Z4 for W~Iss. (In each case, Z* refers to the i th approxi- 
mate natural orbital of the particular approximate function for Be [2].) 

So we see that  the form of the strongly occupied natural geminals for 1S Be 
varies considerably, depending upon the model used to construct the wave func- 
tion. For independent electrons we have gx "~ [ls~], g2 ~ [2s2], or any linear eombi- 
nation of the two due to the eigenvalue degeneracy. For independent electron- 
pairs, gl "~ AK, g2 ~ AL - -  or again any linear combination. Then, in the more 
general configuration interaction function when intershell terms are introduced, 
mixing of the pairs will necessarily arise, and 

N t g~ v~(AK+AD 

1 
g~ "" V-2 (AK -- A L )  �9 (32) 

For the first two cases, the third natural geminal is similar, an uncorrelated product 
[t8 28], while for configuration interaction functions it is considerably more 
complicated. 
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Table 3. The natural geminals o] the Boys truncated natural orbital expansion~ 

417 

Eigenvalues .9999518 .9998465 .9t09798 a .9109798 o 
~(~S) ~(~S) g~(~S) g~(~S) 

(ZzZT) .70674 .70675 .00006 
(Z 1Z2-) - -  .00000 - .00000 .9997~ .99999 
(Zsg~-) .67534 -.67535 -.00001 
(ZaZ~) -.20953 .20955 .00001 
(Z ~ Z~) .00004 - .00004 - .00021 - .00020 
(ZcZ~) - .01692 - .01528 .00012 
(Z~Z~) -.01588 -.01588 .00000 
(g~z~) -.00038 -.00038 .00002 .00002 
( g ~ - )  -.OOO00 .00000 - .00000 - .00000  
(Z~Z~) - .00003 .00004 .00000 .00000 
(ZsX~) -.00000 .00000 .00000 

Eigenvaines .91097980 .0878962 

g~(aS) ' g~(aS) ff~(~p), gs(~p) g~(a p), g~o(a p) 

(ZiZ2) b .99999 (Zd/a) .99999 (Z~X~)" .99999 
(Z~Z~) .0002t (X~Z~) -.00213 (ZaZ~) .00213 
(Z~Z~) .00002 (Z~Z~) -.00002 (Z~Z~) -.00002 
(Z~)  - .00000 
(Z~Zo) .00000 

(kk) is a 2 x 2 Slater determinant. The term (k D = (2) -l& [(~) • (lk)] with the 

(+ )  for the singlet and ( - )  for triplet symmetry. The bar denotes fi spin; (kk) = 
(k~ ~/~). 

b There is one vector for a a  spin and another for tiff spin. 

Table 4. The natural 3.state/unctions~ 

a l  as  G~ 
Eigenvalues 0.998877 0.912102 0.087896 

Configu- Coeffi- Configu- Coeffi- Configu- Coeffi- 
rations dents  rations cients rations dents  

(ZTZ s Z~) .95499 (Z~Z 1 ZY) .99938 
(gY%sg-g) -.29664 (ZYZaX~) -.02496 
(ZTZ4Z~) - .001t  6 (Z~Z 5 Z~-) - .02462 
(Z~-Z 3 Z-if) .00063 (Z~-Z 5 ZV) -.00086 
(ZcZsg~) -.00020 (zi-z~Z~) -.00008 
(Z~ZaZ~) - .00008 ( Z ~ - Z ~ Z ~ )  -.00003 
(Z~Z axe) .O0001 ( ~  5 Z~) -.00003 
(z~z 5 Z~-) -.00000 (Z~ZIZT) .00002 
(XTX~X,~) -.00005 (ZTZsZ~) .0000t 
(Z~-Z 2Z$) .00003 (ZTZ 5Z~) -.00000 
(~Z~Z~) .00000 (Z~-Z ~ Zi-) -.00000 
(,~i-Z S ~ - 6 )  --.00000 (Z2-Z 1Z~-)  -.00030 

(Z~Z1 Z~) .00000 
(z~z~z~) .00000 

(Z-~XiZi-) -.99999 
(Z~X4Z~) .00302 
(X~XiXY) .00003 
(Z~ZlZ~) -.00000 
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Table 4 (Continued) 

a~ a~ a6 
EigenvMues 0.00057i 0.000554 0.000000 
Configu- Coeffi- 
rations cients 

Configu- Coeffi- Configu- Coeffi- 
rations cients rations cients 

(Z~-Z 2 ZY) - .99784 
(Z-gZ 5 Z~) -.03424 
(Z~Z ~ Z-i-) - .04843 
(ZTZ z Z~) .02650 
(ZTZ 2 Z~- )  -.00841 
(Z~Z ~ Tf) - .00146 
(Z~Z ~ L'T) .00084 
(Z~Z 5 Z~) - .00117 
(zgZ ~ Z~) .00013 
(Z'xg a Z ' ~ )  -.00004 
(Z~Z J.g-ff) -.00477 
(Z~Z2Zg) -.00t51 
(z2-Z 2 z~) .000t 3 

(Z-gZ 2 g~) - .  99882 (Z-~Z x ZT) -.70272 
(Z~Z4Z~) - .04914 (ZyZ4Z~) - .50564 
(Z~-Z o Z~) -.00149 (Z~Z5Z~) -.49170 
(ZKZ~Zg) -.00119 (Zi-Z s Z~) .06967 
(Z-fig ~ Z~-) - .00013 (Z-gg t gi-) .05574 

(Z~X~Z~) -.02787 

Configurations (5c5) are 3 x 3 Slater determinants, while (565) = (2)-V~ ((Sbc) -(abc)). 

Natural Expansions 
R e t u r n i n g  to  the  n a t u r a l  o rb i t a l  expans ion  br ief ly ,  i t  should  be no ted  t h a t  

while i t  is the  mos t  r a p i d l y  convergent  conf igurat ion in te rac t ion  funct ion ,  as 
p roved  b y  L 6 w D ~  [12], i t  is genera l ly  no t  as s imple in form as the  n a t u r a l  expan-  
sion of  a func t ion  (for 2-electron funct ions  the  two are  ident ical) .  The  n a t u r a l  
expans ion  is defined as the  bes t  l eas t - squares  expans ion  of ~rr in t e rms  of  eigcn- 
funct ions  of  F(v) and  F(N-~) [13]. F o r  N > 2, the  n a t u r a l  expans ion  involv ing  
n a t u r a l  o rb i ta l s  also involves  e igenfunct ions  of  F(N-x). F o r  example ,  here the  
"1-3"  n a t u r a l  expansion,  in t e rms  of  e igenfunct ions  of  r(1) and  r(a),  will have  the  
form 

1. 
~rr = V4- ~ C~ Z~(l) Gt(2, 3, 4 ) ,  (33) 

where  the  G~ are  n a t u r a l  3-s ta te  funct ions.  I n  Tab.  4 t he  G~ of  Boys  na tu r a l  o rb i ta l  
expans ion  func t ion  are given.  I t  is clear t h a t  going f rom the  " L 3 "  n a t u r a l  expan-  
sion, expand ing  a n d  collecting te rms ,  to  the  n a t u r a l  orbi tM expans ion  e l iminates  
t he  s impl ic i ty  of  func t iona l  form. 
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