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The form of the K-space representation, I', of the 2-matrix for electronic wave functions,
which depends strongly on the form of the wave function, is discussed. For Hartree-Fock
functions I' is diagonal, for antisymmetrized products of strongly orthogonal geminal (APSG)
functions I" has N/2 idempotent blocks plus diagonal terms, and for configuration interactions
functions I' is generally non-diagonal. A new proof of the special properties of I' for APSG
functions is given. The 2-matrix of the truncated natural orbital expansion of the Boys 18 Be
function is presented and discussed in view of the electron-pair approximation. The natural
3-state functions needed in the “1-3” natural expansion of Be are also presented.

On discute la forme de la représentation dans 'espace K:I", de la matricedensité du second
ordre pour des fonctions d’onde électroniques; elle dépend fortement de la forme de la fonction
d’onde. Pour des fonctions de Hartree-Fock I" est diagonal, pour des produits antisymétrisés
de fonctions géminales fortement orthogonales (APSG) I' a N/2 blocs idempotents et des
termes diagonaux, pour des fonctions d’interaction de configuration I" est généralement non-
diagonal. Une nouvelle preuve des propriétés spéciales de I'" pour les fonctions APSG est
donnée. La matrice du second-ordre du développement tronqué de Boys en orbitales naturelles
pour 18 Be est présentée et discutée du point de vue de I'approximation par paires. Les fonec-
tions naturelles a 3 états nécessaires au développement naturel ,,1-3° de Be sont aussi données,

Die Form der K-Raum-Darstellung, I', der Zweiermatrix fiir Elektronenwellenfunktionen,
die stark von der Form der Wellenfunktion abhéngt, wird diskutiert. Fiir Hartree-Fock-
Funktionen ist I" diagonal, fiir antisymmetriesierte Produkte von streng orthogonalen Gemi-
nalen (APSG) besteht I' aus N/2 idempotenten Blocken plus Diagonaltermen, und fiir Kon-
figurationswechselwirkungsfunktionen ist I' allgemein nicht-diagonal. Fir die speziellen
Eigenschaften von I’ fiir APSG’s wird ein neuer Beweis gegeben. Die Zweiermatrix der
abgebrochenen Entwicklung natiirlicher Orbitale der Boys’schen *S-Be-Funktionen wird an-
gegeben und im Hinblick auf die Elektronenpaarapproximation diskutiert. Die in der natiir-
lichen 1-3-Entwicklung von Be benétigten 3-Elektronen-Funktionen werden gleichfalls ange-
geben.

Introduetion

Research on the theory of reduced-density-matrices is motivated primarily by
the desirability of having a possible alternative to solving the Schraédinger equa-
tion in order to find mathematical descriptions of physical states of electronic
systems (e.g., atoms or molecules). As is well known, it is impossible to solve the
Schraédinger equation exactly for an N-electron system with N > 1. In principle,
however, the approximation called the configuration interaction method can
yield solutions which give expectation values of physical properties, generally the
total energy, as accurately as experimental measurements. To date this accuracy
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has been achieved only for 2-electron systems, although with the advent of even
larger and faster electronic computers such accuracy will probably be obtained
for 3- and 4-electron systems in the near future. The problem of constructing a
reduced-density-matrix for a state of interest, i.e., defining the necessary and
sufficient conditions one must impose on a density matrix to insure a one-to-one
correspondence with a quantum mechanical state, has been labeled ‘“the N-
representability problem” by CorEmaN [5]. The physical properties normally of
interest are eigenvalues of one- and two-electron operators; therefore, one is
concerned primarily with reduced-density-matrices of first- and second-order only.

The 2-Matrix
The second-order reduced-density-matrix, called the 2-matrix, is defined by

T, 20,2y = @) [P 2,3, 0 P, 2,3, N) drg.doy (1)

where ¥(1, 2,... N) is an N-electron wave function and () equals the number of
ordered electron-pairs in the N-electron system (Léwdin’s normalization) [72].
From its definition, I'(1, 2; 1’, 2') is a Hermitian quadratic kernel; thus it has a
diagonal series representation [8],

re,2;1,2)= Z i gi(1,2) g¥1’, 2", (2)
¥

where the set of functions g; are normalized and antisymmetric with respect to
interchange of variables; ¢g(1, 2) = — ¢(2, 1). Corresponding to the 2-matrix func-
tion, we can introduce the 2-matrix operator I'®,

™1, 2) — jm, 2,1, 2) P1V, 2) dry iy 3)

where f is an arbitrary 2-variable function. The eigenvalue equation for the 2-
matrix operator is
I'®g,(1,2) =2 g:(1, 2) . 4)

The 4; are eigenvalues and the g; the corresponding eigenfunctions of I'®. The g; are
called natural geminals; “geminal® referring to 2-electron function and “natural”
referring to an eigenfunction of the reduced-density-operator. The eigenvalues 4;
may be interpreted as the number of electron-pairs described by g;; the probability
of an electron-pair being ““in” g; times the total density of electron-pairs in the N-
electron system. (By the term “‘electron-pair” we shall always mean ordered pairs;
i.e., the electrons “labeled” 1 and 2 form one pair.)

By introduction of the 2-matrix we transform the problem of studying N-
electron functions into one of studying the properties of a set of invariant 2-
electron funetions — the natural geminals [6]. Once the natural geminals are
known, any 2-electron properties can be obtained immediately. E.g., consider
the N-electron Hamiltonian

N N
H=3HW + Sh), (5)
i=1 i<y
which can be rewritten as [we divide by the norm of I" (1,2)]

1
H =g O + ) + 1Y ®)
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The expectation value of 5# can be written as

j,}?]’(i, 25 1,2) dr, dry = S k& s (7)
where '
& = j g (1, 2) # gi(1, 2) duy dry , (8)

and r, is the 2-rank of ¥ [1].
One-electron properties are calculated via the {-matrix which is obtained from
the 2-matrix by an integration,

;1) = N_2_I fm, 2,1°,2) dr, . ©)

There is a great deal yet to be learned about the 2-matrix. Approximate
natural geminals, and their corresponding eigenvalues, have been obtained for a
number of 4-electron atomic and molecular wave functions [3] of varying degrees
of goodness (with respect to the ground state total energy). It was seen that the
properties of the 2-matrix vary greatly in going from the simple form of the
Hartree-Fock function to configuration interaction functions. The natural geminals
changed from a simple product to an extended sum of products. Both g; and g,
include the terms which had been introduced into the original functions to describe
electron-electron correlation effects. In the next section we will consider the
special properties of the 2-matrix for the Be 1§ ground state when the 4-electron
wave function is approximated as an antisymmetrized product of strongly ortho-
gonal geminals (APSG). Functions of this form are intermediate between the
Hartree-Fock and configuration interaction forms in complexity [1£]. The for-
malism used is that developed by BARNETT and SeuLL [3] which is quite useful
because it allows direct general application of most of the results obtained by
Lowpin and SHULL in their compleat study of the 2-electron system [13].

The Electron-Pair Approximation

It was shown by Lowpin [12] that an N-electron function can be expanded as
a linear combination of Slater determinants,

¥(1,2,8,4)= > dp ¥:(1,2,3,4), (10)
k

where the set of dy, variationally determined coefficients, are chosen to give the
proper symmetry properties to ¥ — e.g., for an atom, ¥ is generally an eigenfunc-
tion of the operators L2, L,, 8%, S,. In forming the 2-matrix we first expand each
Y, across its first two rows, then we have

1 *
¥{,2,3,4) = 7% %0{7‘ fi(1,2) f¥(3, 4) . (11)
In matrix notation
1
Y= ﬁf(i, 2) Cf1(3,4), (12)

where f is a row vector of all the 2 x 2 Slater determinants, the f;, which result
from the Laplace expansion on each ¥ above. Now the 2-matrix function is given
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by
I, 2;1, 2 = f(1,2) C Ct fY(1', 2, (13)
where we have assumed orthonormality of the set used to construct ¥, thus
f13, 913,49 =1. (14)

After diagonalizing the K-space representation of I'(1,2;1’,2'), C CT, the 2-
matrix becomes

I, 2;1.2') = g(1,2) A g+(1', 2') = i_zli g:(1,2) g (1", 2) . (15)

(The reader will find the above procedure presented in considerable detail in
Ref. [3].)

Now we consider the special case when ¥ is constructed via the APSG approxi-
mation [14]. The two pair-functions are defined by

Aa= 5 odint) pul2)], 16)
and
q
A = 3 b05(1) 0420, (1)
P

where both functions are normalized and antisymmetric to electron exchange
(the square bracket denotes a Slater determinant). The strong orthogonality con-
dition which is always used in practice [14], i.e.

jAA(i, 3) Ap(3,4) dr, = 0, (18)

is introduced by assuming orthonormality within and between the 1-electron
spinorbital sets {g;} and {0;}. Therefore,

a

I

2
[

1, (19)

I

M =

b= 1, (20)

~,

and the 4-electron function is given by
Y(1,2,3,4)=[44(1, 2) Ap(3, 4)] . 21)
Expanding ¥, Eq. (21), it has the form [3]
V= V% % a; b {[@iy @iz 105, 05 + [0, O] iy 93] +
+ {piy 032 [ta 612] + (4, O3] (s O] — (22)
— @iy O3] [@12 0s5] — (@15 Os5] [0, 01,1}

where the double sum is over the p terms in A4, the ¢ terms in Ap, and the p x ¢
terms that are mixed (contain one spinorbital from each pair-function). Now,
considering the matrix notation of Eq. (12), the row vector f(1, 2) can be grouped
into terms from /1 4, terms from Az, and the mixed terms,

f=ftefBefM, (23)



414 G. P. BARNETT:

Further, C has the form

0O C4#& 0
c=|ce4a 0 o0 . (24)
0O 0 c¢uu

Changing notation slightly, let

I'4B —. CAB(CABYt (25)
with matrix elements
rg?= zk OB OFE . (26)
Now the K-space representation of the 2-matrix has block diagonal form,
I+ 0O o
CC'=TI'=1{0 I's4a O . (27)

o o MM

Generally, to find the natural geminals we would need to diagonalize each block
in turn. However, due to the special form of the APSG function we see that this
is not necessary. Observing the following relationship,

(4B} = 3 TP I'y®

= 2 {Z 08" O’} (Z O O
n

= % {% a; by an br} {‘iz an by a; by} (28)
= a0
i
which is valid for all < and 4, I'43 is an idempotent mafrix,
(I'4B)2 — [4B (29)

Therefore I'4B can have eigenvalues of zero and unity only [8]. From the trace of
I4B
TeT45— S T4 =1, (30)

L]

it follows that I'4B has only one non-zero eigenvalue, 4 = 1.

Considering the secular equation briefly [8], the set of numbers {a;} of Eq. (16)
form the eigenvector and the eigenfunction may be chosen as A4 itself. The same
procedure follows through for I'B4 showing Ap to be its natural geminal.

Inspection of matrix elements for terms in I'MM shows that only diagonal terms
appear because of the relationships among {g;} and {6;}. Further, from Eq. (22)
the diagonal terms are degenerate in sets of four. The corresponding eigenfunc-
tions are just the simple products, [@; §;], which KuTzELNIGG [11] calls “un-
correlated” natural geminals.

One can, by this method, go into considerably more detail than we have done
here. By explicitly specifying the forms of 44 and Az one can determine the 2-
rank of ¥ [I] and enumerate the number and magnitudes of all the eigenvalues of
I'. One can continue, generalizing the results to N-electron systems, consider
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states of different symmetries, and consider systems of chemically different types.
The theorem proved above, that the 2-matrix of a APSG wave function is dia-
gonal, it not new, although the method of proof is. Kuvrzerwiee {10, 11] has con-
sidered the problem and spelled out many of the special relationships implicit in
the theorem. (The reader is referred to Ref. [1I] where he reviews, lists, and
discusses many of these properties.)

Natural Geminals

Considerable insight can be gained by studying a wave function expressed in
an invariant basis set. In this section, then, we present the results of a 2-matrix
analysis of the Boys 1§ ground state configuration interaction wave function [4]
expressed in its natural orbital expansion [2]. Clearly, this natural orbital set is
only approximate, however, the utility of transforming functions to such a basis
is well established [9, 15]. The natural orbital expansion is given in Tab. 1, and
the eigenvalues of I'® and I'® are listed in Tab. 2.

The natural geminals (see Tab. 3) are seen to have forms close to what one
would expect from an APSG function. For an APSG function the natural orbitals
of A4 and Ap are the natural orbitals of ¥ as well [11]. We see here that, except
for small cross-terms containing y,, ¢; and g, are sums of squares — the natural
expansion form for 2-electron functions. From its use in the natural orbital ex-
pansion, ¥, is what one would call an intershell orbital. If ¥ were a pure APSG
form, all natural orbitals would be localized within the region spanned by A4 or
A pg only, and intershell correlation effects would be described only by uncorrelated
natural geminals such as the dominant term in g,. If one compares the natural
orbitals of the EBBve and HeNDERSON [7] APSG calculation of TiH with the
natural orbitals expressed in the same basis of Ebbing’s configuration interaction
calculation [6] of the same molecule, the strongly occupied. inner shell (essentially
a Lit* 1s orbital) and bonding natural orbitals (see Ebbing’s plot of g,) are guite
similar. The delocalized natural orbitals of the configuration interaction function
are transformed among themselves in the APSG function into orbitals within the
space of A4 or Ap.

Table 1. The truncated natural orbital expan-
ston of the Boys Be 18 function®

Configuration Coefficient

1 () (22)? s2s? 0.954452
2 (1) (2a)® s2p? —0.296472
3 (1) (x0)? 8% —0.0238383
4 () (0s)? s2p?  —0.023518
5 (x5)® (xexa) p2? —0.001157
6 (1) (1a)? s2%%  —0.001157
T () (e pRs? 0.000895
8  (x2)® (xaxa) 22 —0.000285
9 (%a)? (xaxa) 8% —0.000114
10 (32)® (Xake) 52 —0.000050

s See Ref. [4].
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Table 2. Occupation numbers for the Boys 1S Be function

re re

n symmetry A symmetry
.998877 s .9999518 18
912102 s 9998465 18
087896 P 9109798, 18
.000571 s 9109798, (3)» 38
.000554 P 0878962  (4) P
.000000 s

2 These values are for the total ¥, for the truncated
natural orbital expansion of Tab.1 the numbers are the
same through the sixth decimal.

b A 3-fold degenerate term (see Ref. [3]).

¢ A 4-fold term.

To the degree of degeneracy of the eigenvalues of ¢; and g,, the sum and the
difference of the first two natural geminals transform into predominantly K shell
and L shell pair functions,

1
75 (01 g2) ~ A = 1.07 — 023 + 0223 — 00067, 74
1
73— 92) ~ Az = 975 — 3y5— 0004z, 7, - (31)

Omitting the cross-terms, an ASPG function formed from Ax and Ay, gives the
first four terms of the natural orbital expansion which has an overlap of almost
unity with the total function [2]. (Of course starting from Ax and Ay, as defined
here, the overlap would be different as the coefficients in the natural orbital
expansion are determined by a different criterion.) Similarly, the first few terms,
the predominant ones, of the natural orbital expansions of WaTson’s [16] and
Wxiss’ [17] functions would be obtained by constructing Ax from yx,, ¥4, x5 for
Warson, and from y,, ¥5, x¢ for WEILss, and constructing /A, from. x,, %, 3¢ for
Warsox and from y,, ys, 7, for WrIss. (In each case, y; refers to the ¢th approxi-
mate natural orbital of the particular approximate function for Be [2].)

So we see that the form of the strongly occupied natural geminals for 1S Be
varies considerably, depending upon the model used to construct the wave func-
tion. For independent electrons we have g, ~ [15%], g, ~ [25%], or any linear combi-
nation of the two due to the eigenvalue degeneracy. For independent electron-
pairs, g; ~ Ak, g, ~ A, — or again any linear combination. Then, in the more
general configuration interaction function when intershell terms are introduced,
mixing of the pairs will necessarily arise, and

1
g1~ yg Ar + A1)
1
g2~ y5 Ux — A1) - (32)

For the first two cases, the third natural geminal is similar, an uncorrelated product
[1s 2s], while for configuration interaction functions it is considerably more
complicated.
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Table 3. The natural geminals of the Boys truncated natural orbital expansion®
Eigenvalues 9999518 .9998465 .9109798, .9109798,
¢ (*8) 72(%9) g5() 94(%9)
(x1xT) .10674 70675 .00006
(x1%%) -.00000 —.00000 .99971 .99999
(1277) 67534 — 67535 ~.00001
(x3%%) —-.20953 .20955 .00001
(Xaxz) .00004 -.00004 -.00021 —.00020
(axz) —.01692 —.01528 .00012
(575) ~.01588 —.01588 .00000
(¢1x7) —.00038 —.00038 .00002 .00002
(x1x9) —.00000 .00000 —.00000 -.00000
(xaxs) —.00003 .00004 .00000 .00000
(r2x6) -.00000 .00000 .00000
Eigenvalues .9109798, 0878962
9:(°5). 94(°S) 7:(P), 3:CP) 0,0 P), 924 P)
(raxe)® .99999 (xaxs) .99999 (raxs)® .99999
(2axa) .00021 (2sXs) —.00213 (Xaxa) .00213
(taxe) .00002 (%a%s) —.00002 (%20s) ~.00002
(%16 -.00000
(%aXe) .00000
» (kk) is a 2 x 2 Slater determinant. The term (kl) = (2)~"2[(%l) + (k)] with the
(+) for the singlet and ( —) for triplet symmetry. The bar denotes f§ spin; (kk) =
(ko EB).
b There is one vector for aa spin and another for ff spin.
Table 4. T'he natural 3-state functions®
Gy G, G,
Eigenvalues 0.998877 0.912102 0.087896
Configu- Coeffi- Configu- Coeffi- Configu- Coeffi-
rations cients rations cients rations cients
(xz22x2) 95499 (xzx107) -99938 (ezxax1) —.99999
(xT23%3) —.20664 (xzxaxz) —.02496 (x3x4x7) -00302
(rzxaxz) ~.00116 (rzx52%) —.02462 (xsx1xz) .00003
(xzx3x3) -00063 (xzx5x5) —.00086 (rsx123) —.00000
(xzz2xz) ~-.00020 (x12a%x7) —.00008
(rzxax7) —.00008 (xe%axz) —.00003
(x=23x3) -00001 (xs2513) —.00003
(xzx5%3) ~-.00000 (xzx127) -00002
(xzx42%) —.00005 (xT23%%) -00001
VaveEyey) -00003 (xz252%) —-00000
(xazexe) -00000 (rex12T) —.00000
(xTx2x8) —.00000 (xzx127T) —.00030
(rex1x3) -00000

(zxax®) .00000
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Table 4 (Continued)

G4 G5 GG
Eigenvalues 0.000571 0.000554 0.000000
Configu- Coeffi- Configu- Coeffi- Configu- Coeffi-
rations cienfts rations cients rations cients
(xzxax2) —.99784 (xr5222%) —.99882 (xzx2x1) —.70272
(xs%5%5) —.03424 (xrsxax) —.04914 (rzAaxz) —.50564
(xzx1xT) ~.04843 (xsx2x7) -.00149 (xzxA5x3) -.49170
(xT2323) .02650 (xs12%%) -.00119 (xzx2x2) .06967
(rTxexe) —.00841 (rsx1%%) -.00013 (zx1xT) 05574
(rex1xT) -.00146 (xzx1x2) —.02787
(zx1xT) .00084
(xzxs%5) -.00117
(xsx2x2) .00013
(xzx3x3) -.00004
(xzx1x%) —.00477
(xzx2x%) —.00151
(rTxexe) 00013

s Configurations (Gcc) are 3 x 3 Slater determinants, while (@b8) = (2)~"e ({(dbe) ~ (abc)).

Natural Expansions

Returning to the natural orbital expansion briefly, it should be noted that
while it is the most rapidly convergent configuration interaction function, as
proved by Lowpin [12], it is generally not as simple in form as the natural expan-
sion of & function (for 2-electron functions the two are identical). The natural
expansion is defined as the best least-squares expansion of ¥ in terms of eigen-
functions of I'® and I'W-2 [13]. For N > 2, the natural expansion involving
natural orbitals also involves eigenfunctions of I'W-1, For example, here the
““4-3” natural expansion, in terms of eigenfunctions of I'® and I'®, will have the
form .

W= S O) G 3,4, %)

where the ; are natural 3-state functions. In Tab. 4 the G; of Boys natural orbital
expansion fanction are given. It is clear that going from the “1-3” natural expan-
sion, expanding and collecting terms, to the natural orbital expansion eliminates
the simplicity of funetional form.
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